

MICE Experiment

Daniel M. Kaplan

May 28, 2014

Outline

- MICE Overview
- Goals & Status
- Recent Progress
- Personnel & Activities
- Budgets & Funding
- Schedule
- Conclusions

MICE Overview

- Muon ionization cooling (µIC) yet to be demonstrated experimentally
 - But crucial to feasibility and performance of muon colliders and neutrino factories
 - Both NF and high £ MC require more than an order of magnitude of 6D-emittance reduction
- Purpose of MICE: demonstrate µIC feasibility & validate its simulations
- Approach: build short piece of realistic ionization cooling channel and operate it in a muon beam instrumented with precision diagnostics
 - Understand performance well enough to reliably extrapolate cost of muon cooling for MC or NF
 - Measurement of ≈10% emittance reduction to 1% relative precision, i.e., 10⁻³ emittance resolution
 - Requires single-particle measurements in low-intensity beam

Ionization Cooling

- Recall cooling principle: good cooling requires
 - Low-Z absorber
 - Low β_⊥ at absorber
 - Achievable via high magnetic field or field gradier

- RF cavities between absorbers replace ΔE
- Net effect: reduction in p_{\perp} at constant p_{\parallel} , i.e., transverse cooling

$$\frac{d\epsilon_N}{ds} \approx -\frac{1}{\beta^2} \left\langle \frac{dE_\mu}{ds} \right\rangle \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2\beta^3 E_\mu m_\mu X_0}$$
 (emittance change per unit length)

- or field gradient, and with or without field flips*
- Non-flip lattice more economical of superconductor
- Plan to measure emittance change vs input emittance, momentum, and β_{\perp} in both flip & non-flip approaches

*but canonical angular momentum cancellation requires at least occasional field flips

MICE Apparatus

- Construction status/schedule of US components just covered
 - in sum, all components* needed for next MICE step have been built & successfully tested

^{*} Except for wedge absorbers & partial return yolk, which are on order

Phase I and Phase II Goals

- Step "IV" Goals:
 - 1st demonstration of ⊥ cooling, but without reacceleration
 - Precisely characterize effects of low-Z absorber materials on muon beam
 - Validate Monte Carlo models
 - Better than in Step VI since shorter track extrapolation and simpler optics
 - Demonstrate emittance exchange (principle of 6D cooling) using wedge absorber
- Step "¾1" "V" Goals:
 - Demonstrate "sustainable" cooling
 - Energy loss and replacement via absorbers surrounding short RF linac
 - Test performance in a variety of optics configurations
 - Thorough validation of simulation codes

Principles of MICE (Step VI)

(Not yet updated for Step V)

• B_z vs. z (nominal, 200 MeV/c):

• β_{\perp} vs. z (nominal, 200 MeV/c):

Beam behavior vs. z:

Cooling vs. input emittance (200 MeV/c):

Emittance-momentum matrix:

- Plan to study both flip and non-flip modes, multiple absorber materials & configs
 - need ~10⁶ events for each case

MIPO

MEMO

MICE Papers

- 2 comprehensive MICE Step I papers, one recent:
 - D. Adams et al., "Characterisation of the muon beams for the Muon Ionisation Cooling Experiment," Eur. Phys. J. C73 (2013) 2582
 - M. Bogomilov et al., "The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment," JINST 7 (2012) P05009
- 1 more in progress:
 - 1. "Measurement of the pion contamination in the MICE beam"
- Plus recent technical or conference papers...

More (Recent) MICE Papers

- 1. The detector system of the Muon Ionization Cooling Experiment (MICE) experiment
 - Maurizio Bonesini. 2014. 3 pp.
 - Published in PoS EPS-HEP2013 (2014) 018
- 2. Progress towards completion of the MICE demonstration of ionisation cooling of muons
 - Y.I. Karadzhov. 2014. 3 pp.
 - Published in PoS EPS-HEP2013 (2014) 017
- 3. Progress Towards Completion of the MICE Demonstration of Muon Ionization Cooling
 - MICE Collaboration (Daniel M. Kaplan (IIT, Chicago) for the collaboration). Dec 5, 2013. 4 pp.
 - NuFact2013, e-Print: arXiv:1312.1626 [physics.acc-ph]
- 4. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction
 - MICE Collaboration (Ruslan Asfandiyarov for the collaboration). 2013. 6 pp.
 - Published in Nucl.Instrum.Meth. A732 (2013) 451-456
- 5. Muon Cooling, Muon Colliders, and the MICE Experiment
 - MICE Collaboration (Daniel M. Kaplan (IIT, Chicago) for the collaboration). Jul 15, 2013. 5 pp.
 - IIT-CAPP-13-2, MICE-CONF-GEN-415, FERMILAB-CONF-13-172-APC
 - Presented at COOL'13 Conference, e-Print: arXiv:1307.3891 [physics.acc-ph]
- 6. Status of the Muon Ionization Cooling Experiment (MICE)
 - Y. Torun, M. Zisman
 - Proceedings of PAC2013, Pasadena, CA USA, THPHO18

Critical Challenges

- (We do not address MICE Construction)
- Step IV Operations:
 - ISIS long shutdown Aug. 2014 Feb. 2015
 - Must plan & execute work to be ready for Step IV data-taking as early in 2015 as possible
 - Need robust software effort in order to be ready in time
 - MAUS development progressing
 - Software effort understaffed
 - relies heavily on students, but postdocs now getting more involved
 - Common Fund (currently assessed @ £3k/yr/PhD collaborator) intended to cover operations support & cryogens
 - However, cost of "professional shifters" will exceed available Common Fund
 - LH₂, Magnet, & Cryo expert(s)
 - Controls system expert(s)
 - DAQ system expert(s)
 - Also true for cryogens
 - ⇒ possible doubling of assessment
 - Need to staff these expert roles & delineate their responsibilities
 - Training & deploying sufficient shifters

Who Does What

(Both DOE- & NSF-supported)

- Fermilab: D. Adey, D. Bowring, A. Bross, M. Leonova, M. Popovic
 - Tracker
 - Beamline
- BNL: H. Witte, R. Palmer
 - Lattice design
- LBNL: D. Li, M. Zisman
 - Magnets
 - RF
- UCR: G. Hanson, C. Heidt
 - Tracker
 - Controls & Monitoring software

Who	MICE Admin. Role	C'tee
A. Bross	Dep. Spokes.	Exec. & Tech. Bds.
P. Hanlet	Expt. Integr. Scientist C&M Leader	Tech. Bd.
D. Kaplan	US Rep.	Exec. & Edit. Bds.
D. Rajaram	Offline Software Head	

- IIT: M. Drews, P. Hanlet, D. Kaplan, D. Rajaram, P. Snopok, Y. Torun, M. Winter
 - Experiment integration
 - Controls & Monitoring software
 - Offline software
 - Tracker*
- U Iowa: U. Akgun, J. Nachtman, Y. Onel, R. Rahmat
 - Tracker*
- U Miss: L. Cremaldi, D. Sanders, D. Summers
 - Tracker*
 - Ckov detectors & analysis
 - RF
 - Absorber windows
- UNH: U. Bravar
 - Optics studies

Color code:

Faculty

Research Faculty

Adjunct Faculty

Scientist

Postdoc

Grad student

Undergrad

*proposed

Budget Overview

NSF:

- 6→4-university consortium
 - UC Riverside (former lead institution) G. Hanson, PI (final year of funding)
 - U Chicago Y. K. Kim, PI (terminated)
 - IIT (now lead institution) D. Kaplan, PI (final year of funding)
 - U lowa Y. Onel, Pl
 - U Mississippi D. Summers, PI
 - U New Hampshire U. Bravar, PI
- Previous proposal: requested \$3.2M for 3 years, 2013–16
 - Renewed at "subsistence" level (IIT & UCR only, \$0.2M), for 1 year
 - Advised to reapply to new Accelerator R&D program to begin in FY14
- New proposal: \$2.6M for 3 years, 2014–17 (IIT, U lowa, U Miss, UNH)

• <u>DOE (MAP)</u>:

- Support for Fermilab, BNL, LBNL groups & key personnel, including
 - Alan Bross, Fermilab: Deputy Spokesperson & Construction L1 Mgr
 - Pierrick Hanlet, IIT: Expt Integration Scientist / Controls & Monitoring Head
 - Daniel Kaplan, Systems Demonstrations L1 Mgr (partial release time)
 - Durga Rajaram, IIT: Offline Software Head
- Plus corresponding travel and Common Fund contributions

NSF Proposal Overview

- NSF proposal 3-year budget request:
 - IIT: 0.7M
 - Postdoc, grad student, undergrads, travel
 - Tracker DAQ support, emittance exchange studies
 - U Iowa: 0.8M
 - Postdoc, grad student, undergrads, travel
 - Tracker DAQ support, Ckov
 - U Miss: 0.6M
 - Postdoc, undergrads, travel
 - Tracker DAQ support, absorber window measurements, Ckov
 - UNH: 0.5M
 - Grad student, undergrads, travel
 - Optics simulations
 - All: operations and analysis
- Status: still under review
 - Hope to hear soon

Tracker DAQ Support

Tracker DAQ is a complex system

Tracker cosmic-ray test at RAL

- 8k SciFi readout channels instrumented with cryogenic, VLPC photodetectors
 - Readout via DØ AFE-IIt modules, each controlled by 3 FPGAs
 - Built originally for DØ, tested with IIT MICE help (NSF MRI)
 - Its support is a US responsibility within MICE

Tracker DAQ Support

Tracker operation entails cryogenics, calibrations, and needed µcode

mods

- NSF support for 3 postdocs requested to cover these (US) responsibilities and to provide US analysis manpower
 - Success of MICE requires full engagement by all collaborating regions
 - · Appropriate US physics contribution commensurate with hardware one
 - Note UK Provides ≈ 7 FTE of tracker effort

Schedule

- Critical path driven by MICE Construction
- Anticipated schedule:
 - 1st demo of cooling (Step IV) 2015–16
 - 1st demo of sustainable cooling (Step V) 2018

Conclusions

- MICE is a program to demonstrate that ionization cooling is feasible and well understood
- Aim to demonstrate the principles of 6-dimensional cooling as well as transverse
 - ...and thus lay the groundwork for muon colliders and neutrino factories
 - ...by 2018
 - Requires some increase in support in order to accomplish needed work
 - Need few more FTE to provide adequate Tracker support and make needed progress towards Step IV readiness
 - As well as students to carry out Step IV operations and analysis
 - Hope for additional contributions from NSF!
- We are committed to seeing it through to a successful conclusion

Personal view

- In the big picture, seems a pity to spend ≈ \$90M on MICE and not go the "last yard" to do the more thorough Step VI cooling validation!
 - but we can only do what we can
- Step V will be good enough